Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Front Microbiol ; 15: 1316633, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38380088

RESUMO

Understanding the relation between terrestrial microorganisms and edaphic factors in the Antarctic can provide insights into their potential response to environmental changes. Here we examined the composition of bacterial and micro-eukaryotic communities using amplicon sequencing of rRNA genes in 105 soil samples from the Sør Rondane Mountains (East Antarctica), differing in bedrock or substrate type and associated physicochemical conditions. Although the two most widespread taxa (Acidobacteriota and Chlorophyta) were relatively abundant in each sample, multivariate analysis and co-occurrence networks revealed pronounced differences in community structure depending on substrate type. In moraine substrates, Actinomycetota and Cercozoa were the most abundant bacterial and eukaryotic phyla, whereas on gneiss, granite and marble substrates, Cyanobacteriota and Metazoa were the dominant bacterial and eukaryotic taxa. However, at lower taxonomic level, a distinct differentiation was observed within the Cyanobacteriota phylum depending on substrate type, with granite being dominated by the Nostocaceae family and marble by the Chroococcidiopsaceae family. Surprisingly, metazoans were relatively abundant according to the 18S rRNA dataset, even in samples from the most arid sites, such as moraines in Austkampane and Widerøefjellet ("Dry Valley"). Overall, our study shows that different substrate types support distinct microbial communities, and that mineral soil diversity is a major determinant of terrestrial microbial diversity in inland Antarctic nunataks and valleys.

2.
Sci Adv ; 9(46): eade7130, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37976353

RESUMO

Toward the poles, life on land is increasingly dominated by microorganisms, yet the evolutionary origin of polar microbiomes remains poorly understood. Here, we use metabarcoding of Arctic, sub-Antarctic, and Antarctic lacustrine benthic microbial communities to test the hypothesis that high-latitude microbiomes are recruited from a globally dispersing species pool through environmental selection. We demonstrate that taxonomic overlap between the regions is limited within most phyla, even at higher-order taxonomic levels, with unique deep-branching phylogenetic clades being present in each region. We show that local and regional taxon richness and net diversification rate of regionally restricted taxa differ substantially between polar regions in both microeukaryotic and bacterial biota. This suggests that long-term evolutionary divergence resulting from low interhemispheric dispersal and diversification in isolation has been a prominent process shaping present-day polar lake microbiomes. Our findings illuminate the distinctive biogeography of polar lake ecosystems and underscore that conservation efforts should include their unique microbiota.


Assuntos
Lagos , Microbiota , Filogenia , Evolução Biológica , Regiões Antárticas
3.
Microb Genom ; 9(7)2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37417735

RESUMO

Benthic microbial mats dominated by Cyanobacteria are important features of polar lakes. Although culture-independent studies have provided important insights into the diversity of polar Cyanobacteria, only a handful of genomes have been sequenced to date. Here, we applied a genome-resolved metagenomics approach to data obtained from Arctic, sub-Antarctic and Antarctic microbial mats. We recovered 37 metagenome-assembled genomes (MAGs) of Cyanobacteria representing 17 distinct species, most of which are only distantly related to genomes that have been sequenced so far. These include (i) lineages that are common in polar microbial mats such as the filamentous taxa Pseudanabaena, Leptolyngbya, Microcoleus/Tychonema and Phormidium; (ii) the less common taxa Crinalium and Chamaesiphon; (iii) an enigmatic Chroococcales lineage only distantly related to Microcystis; and (iv) an early branching lineage in the order Gloeobacterales that is distributed across the cold biosphere, for which we propose the name Candidatus Sivonenia alaskensis. Our results show that genome-resolved metagenomics is a powerful tool for expanding our understanding of the diversity of Cyanobacteria, especially in understudied remote and extreme environments.


Assuntos
Cianobactérias , Metagenômica , Cianobactérias/genética , Lagos/microbiologia , Metagenoma , Sequência de Bases
4.
Sci Total Environ ; 795: 148640, 2021 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-34246139

RESUMO

Microplastics (MPs) have been found everywhere as they are easily transported between environmental compartments. Through their transport, MPs are quickly colonized by microorganisms; this microbial community is known as the plastisphere. Here, we characterized the plastisphere of three MPs, one biodegradable (PHB) and two non-biodegradables (HDPE and LDPE), deployed in an Arctic freshwater lake for eleven days. The plastisphere was found to be complex, confirming that about a third of microbial colonizers were viable. Plastisphere was compared to microbial communities on the surrounding water and microbial mats on rocks at the bottom of the lake. Microbial mats followed by MPs showed the highest diversity regarding both prokaryotes and eukaryotes as compared to water samples; however, for fungi, MPs showed the highest diversity of the tested substrates. Significant differences on microbial assemblages on the three tested substrates were found; regarding microbial assemblages on MPs, bacterial genera found in polar environments such as Mycoplana, Erythromicrobium and Rhodoferax with species able to metabolize recalcitrant chemicals were abundant. Eukaryotic communities on MPs were characterized by the presence of ciliates of the genera Stentor, Vorticella and Uroleptus and the algae Cryptomonas, Chlamydomonas, Tetraselmis and Epipyxis. These ciliates normally feed on algae so that the complexity of these assemblages may serve to unravel trophic relationships between co-existing taxa. Regarding fungal communities on MPs, the most abundant genera were Betamyces, Cryptococcus, Arrhenia and Paranamyces. MPs, particularly HDPE, were enriched in the sulI and ermB antibiotic resistance genes (ARGs) which may raise concerns about human health-related issues as ARGs may be transferred horizontally between bacteria. This study highlights the importance of proper waste management and clean-up protocols to protect the environmental health of pristine environments such as polar regions in a context of global dissemination of MPs which may co-transport microorganisms, some of them including ARGs.


Assuntos
Lagos , Microplásticos , Bactérias , Resistência Microbiana a Medicamentos , Humanos , Plásticos , Proibitinas
5.
Ecol Evol ; 9(3): 1211-1226, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30805154

RESUMO

High-throughput sequencing has the potential to describe biological communities with high efficiency yet comprehensive assessment of diversity with species-level resolution remains one of the most challenging aspects of metabarcoding studies. We investigated the utility of curated ribosomal and mitochondrial nematode reference sequence databases for determining phylum-specific species-level clustering thresholds. We compiled 438 ribosomal and 290 mitochondrial sequences which identified 99% and 94% as the species delineation clustering threshold, respectively. These thresholds were evaluated in HTS data from mock communities containing 39 nematode species as well as environmental samples from Vietnam. We compared the taxonomic description of the mocks generated by two read-merging and two clustering algorithms and the cluster-free Dada2 pipeline. Taxonomic assignment with the RDP classifier was assessed under different training sets. Our results showed that 36/39 mock nematode species were identified across the molecular markers (18S: 32, JB2: 19, JB3: 21) in UClust_ref OTUs at their respective clustering thresholds, outperforming UParse_denovo and the commonly used 97% similarity. Dada2 generated the most realistic number of ASVs (18S: 83, JB2: 75, JB3: 82), collectively identifying 30/39 mock species. The ribosomal marker outperformed the mitochondrial markers in terms of species and genus-level detections for both OTUs and ASVs. The number of taxonomic assignments of OTUs/ASVs was highest when the smallest reference database containing only nematode sequences was used and when sequences were truncated to the respective amplicon length. Overall, OTUs generated more species-level detections, which were, however, associated with higher error rates compared to ASVs. Genus-level assignments using ASVs exhibited higher accuracy and lower error rates compared to species-level assignments, suggesting that this is the most reliable pipeline for rapid assessment of alpha diversity from environmental samples.

6.
Syst Appl Microbiol ; 41(4): 279-290, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29475572

RESUMO

Most bacterial lineages are known only by molecular sequence data from environmental surveys and represent the uncultivated majority. One of these lineages, candidate phylum FBP, is widespread in extreme environments on Earth, ranging from polar and desert ecosystems to wastewater and contaminated mine sites. Here we report on the characterization of strain LMG 29911T, the first cultivated representative of the FBP lineage. The strain was isolated from a terrestrial surface sample from Utsteinen, Sør Rondane Mountains, East Antarctica and is a Gram-negative, aerobic, oligotrophic chemoheterotrophic bacterium. It displays growth in a very narrow pH range, use of only a limited number of carbon sources, but also a metabolism optimized for survival in low-nutrient habitats. Remarkably, phenotypic and genome analysis indicated an extreme resistance against antibiotics and toxic compounds. We propose the names Abditibacterium utsteinense for this bacterium and Abditibacteriota for the former candidate phylum FBP. Furthermore, inter- and intra-phylum relationships indicate Armatimonadetes, a neighboring lineage to the Abditibacteriota, to be a superphylum.


Assuntos
Genoma Bacteriano/genética , Bactérias Anaeróbias Gram-Negativas , Regiões Antárticas , Técnicas de Tipagem Bacteriana , Composição de Bases , Sequência de Bases , DNA Bacteriano/genética , Farmacorresistência Bacteriana Múltipla/genética , Ácidos Graxos/análise , Bactérias Anaeróbias Gram-Negativas/classificação , Bactérias Anaeróbias Gram-Negativas/genética , Bactérias Anaeróbias Gram-Negativas/isolamento & purificação , Bactérias Anaeróbias Gram-Negativas/metabolismo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Microbiologia do Solo
8.
FEMS Microbiol Ecol ; 92(9)2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27402710

RESUMO

Antarctic soils are known to be oligotrophic and of having low buffering capacities. It is expected that this is particularly the case for inland high-altitude regions. We hypothesized that the bedrock type and the presence of macrobiota in these soils enforce a high selective pressure on their bacterial communities. To test this, we analyzed the bacterial community structure in 52 soil samples from the western Sør Rondane Mountains (Dronning Maud Land, East Antarctica), using the Illumina MiSeq platform in combination with ARISA fingerprinting. The samples were taken along broad environmental gradients in an area covering nearly 1000 km(2) Ordination and variation partitioning analyses revealed that the total organic carbon content was the most significant variable in structuring the bacterial communities, followed by pH, electric conductivity, bedrock type and the moisture content, while spatial distance was of relatively minor importance. Acidobacteria (Chloracidobacteria) and Actinobacteria (Actinomycetales) dominated gneiss derived mineral soil samples, while Proteobacteria (Sphingomonadaceae), Cyanobacteria, Armatimonadetes and candidate division FBP-dominated soil samples with a high total organic carbon content that were mainly situated on granite derived bedrock.


Assuntos
Bactérias/isolamento & purificação , Microbiologia do Solo , Acidobacteria/isolamento & purificação , Actinobacteria/isolamento & purificação , Regiões Antárticas , Bactérias/classificação , Cianobactérias/isolamento & purificação , Proteobactérias/isolamento & purificação , Solo/química
9.
FEMS Microbiol Ecol ; 92(6): fiw041, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26936447

RESUMO

The bacterial and microeukaryotic biodiversity were studied using pyrosequencing analysis on a 454 GS FLX+ platform of partial SSU rRNA genes in terrestrial and aquatic habitats of the Sør Rondane Mountains, including soils, on mosses, endolithic communities, cryoconite holes and supraglacial and subglacial meltwater lenses. This inventory was complemented with Denaturing Gradient Gel Electrophoresis targeting Chlorophyta and Cyanobacteria. OTUs belonging to the Rotifera, Chlorophyta, Tardigrada, Ciliophora, Cercozoa, Fungi, Bryophyta, Bacillariophyta, Collembola and Nematoda were present with a relative abundance of at least 0.1% in the eukaryotic communities. Cyanobacteria, Proteobacteria, Bacteroidetes, Acidobacteria, FBP and Actinobacteria were the most abundant bacterial phyla. Multivariate analyses of the pyrosequencing data revealed a general lack of differentiation of both eukaryotes and prokaryotes according to habitat type. However, the bacterial community structure in the aquatic habitats was dominated by the filamentous cyanobacteria Leptolyngbya and appeared to be significantly different compared with those in dry soils, on mosses, and in endolithic habitats. A striking feature in all datasets was the detection of a relatively large amount of sequences new to science, which underscores the need for additional biodiversity assessments in Antarctic inland locations.


Assuntos
Acidobacteria/genética , Actinobacteria/genética , Bacteroidetes/genética , Clorófitas/genética , Cianobactérias/genética , Fungos/genética , Proteobactérias/genética , Regiões Antárticas , Sequência de Bases , Biodiversidade , Eletroforese em Gel de Gradiente Desnaturante , Ecossistema , Fungos/classificação , RNA Ribossômico/genética , Análise de Sequência de DNA , Solo/química , Microbiologia do Solo
10.
BMC Genomics ; 17: 155, 2016 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-26923558

RESUMO

BACKGROUND: Copper dependent nitrite reductase, NirK, catalyses the key step in denitrification, i.e. nitrite reduction to nitric oxide. Distinct structural NirK classes and phylogenetic clades of NirK-type denitrifiers have previously been observed based on a limited set of NirK sequences, however, their environmental distribution or ecological strategies are currently unknown. In addition, environmental nirK-type denitrifiers are currently underestimated in PCR-dependent surveys due to primer coverage limitations that can be attributed to their broad taxonomic diversity and enormous nirK sequence divergence. Therefore, we revisited reported analyses on partial NirK sequences using a taxonomically diverse, full-length NirK sequence dataset. RESULTS: Division of NirK sequences into two phylogenetically distinct clades was confirmed, with Clade I mainly comprising Alphaproteobacteria (plus some Gamma- and Betaproteobacteria) and Clade II harbouring more diverse taxonomic groups like Archaea, Bacteroidetes, Chloroflexi, Gemmatimonadetes, Nitrospirae, Firmicutes, Actinobacteria, Planctomycetes and Proteobacteria (mainly Beta and Gamma). Failure of currently available primer sets to target diverse NirK-type denitrifiers in environmental surveys could be attributed to mismatches over the whole length of the primer binding regions including the 3' site, with Clade II sequences containing higher sequence divergence than Clade I sequences. Simultaneous presence of both the denitrification and DNRA pathway could be observed in 67% of all NirK-type denitrifiers. CONCLUSION: The previously reported division of NirK into two distinct phylogenetic clades was confirmed using a taxonomically diverse set of full-length NirK sequences. Enormous sequence divergence of nirK gene sequences, probably due to variable nirK evolutionary trajectories, will remain an issue for covering diverse NirK-type denitrifiers in amplicon-based environmental surveys. The potential of a single organism to partition nitrate to either denitrification or dissimilatory nitrate reduction to ammonium appeared to be more widespread than originally anticipated as more than half of all NirK-type denitrifiers were shown to contain both pathways in their genome.


Assuntos
Archaea/genética , Bactérias/genética , Desnitrificação/genética , Nitrito Redutases/genética , Filogenia , Sequência de Aminoácidos , Compostos de Amônio/metabolismo , Archaea/enzimologia , Proteínas Arqueais/genética , Bactérias/enzimologia , Proteínas de Bactérias/genética , Primers do DNA/genética , Evolução Molecular , Dados de Sequência Molecular , Nitratos/metabolismo , Alinhamento de Sequência , Análise de Sequência de DNA
11.
Front Microbiol ; 7: 2026, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28066352

RESUMO

Microbial life in exposed terrestrial surface layers in continental Antarctica is faced with extreme environmental conditions, including scarcity of organic matter. Bacteria in these exposed settings can therefore be expected to use alternative energy sources such as solar energy, abundant during the austral summer. Using Illumina MiSeq sequencing, we assessed the diversity and abundance of four conserved protein encoding genes involved in different key steps of light-harvesting pathways dependent on (bacterio)chlorophyll (pufM, bchL/chlL, and bchX genes) and rhodopsins (actinorhodopsin genes), in exposed soils from the Sør Rondane Mountains, East Antarctica. Analysis of pufM genes, encoding a subunit of the type 2 photochemical reaction center found in anoxygenic phototrophic bacteria, revealed a broad diversity, dominated by Roseobacter- and Loktanella-like sequences. The bchL and chlL, involved in (bacterio)chlorophyll synthesis, on the other hand, showed a high relative abundance of either cyanobacterial or green algal trebouxiophyceael chlL reads, depending on the sample, while most bchX sequences belonged mostly to previously unidentified phylotypes. Rhodopsin-containing phototrophic bacteria could not be detected in the samples. Our results, while suggesting that Cyanobacteria and green algae are the main phototrophic groups, show that light-harvesting bacteria are nevertheless very diverse in microbial communities in Antarctic soils.

12.
Microb Ecol ; 71(1): 131-49, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26582318

RESUMO

Cyanobacteria are generally thought to be responsible for primary production and nitrogen fixation in the microbial communities that dominate Antarctic ecosystems. Recent studies of bacterial communities in terrestrial Antarctica, however, have shown that Cyanobacteria are sometimes only scarcely present, suggesting that other bacteria presumably take over their role as primary producers and diazotrophs. The diversity of key genes in these processes was studied in surface samples from the Sør Rondane Mountains, Dronning Maud Land, using clone libraries of the large subunit of ribulose-1,5-biphosphate carboxylase/oxygenase (RuBisCO) genes (cbbL, cbbM) and dinitrogenase-reductase (nifH) genes. We recovered a large diversity of non-cyanobacterial cbbL type IC in addition to cyanobacterial type IB, suggesting that non-cyanobacterial autotrophs may contribute to primary production. The nifH diversity recovered was predominantly related to Cyanobacteria, particularly members of the Nostocales. We also investigated the occurrence of proteorhodopsin and anoxygenic phototrophy as mechanisms for non-Cyanobacteria to exploit solar energy. While proteorhodopsin genes were not detected, a large diversity of genes coding for the light and medium subunits of the type 2 phototrophic reaction center (pufLM) was observed, suggesting for the first time, that the aerobic photoheterotrophic lifestyle may be important in oligotrophic high-altitude ice-free terrestrial Antarctic habitats.


Assuntos
Bactérias/isolamento & purificação , Bactérias/metabolismo , Proteínas de Bactérias/genética , Biodiversidade , Dinitrogenase Redutase/genética , Ribulose-Bifosfato Carboxilase/genética , Microbiologia do Solo , Regiões Antárticas , Processos Autotróficos , Bactérias/classificação , Bactérias/genética , DNA Bacteriano/genética , Processos Fototróficos , Filogenia , RNA Ribossômico 16S/genética , Solo/química
13.
PLoS One ; 10(5): e0126583, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25961719

RESUMO

Surface sediments are important systems for the removal of anthropogenically derived inorganic nitrogen in estuaries. They are often characterized by the presence of a microphytobenthos (MPB) biofilm, which can impact bacterial communities in underlying sediments for example by secretion of extracellular polymeric substances (EPS) and competition for nutrients (including nitrogen). Pyrosequencing and qPCR was performed on two intertidal surface sediments of the Westerschelde estuary characterized by a two-fold difference in MPB biomass but no difference in MPB composition. Doubling of MPB biomass was accompanied by a disproportionately (ten-fold) increase in total bacterial abundances while, unexpectedly, no difference in general community structure was observed, despite significantly lower bacterial richness and distinct community membership, mostly for non-abundant taxa. Denitrifier abundances corresponded likewise while community structure, both for nirS and nirK denitrifiers, remained unchanged, suggesting that competition with diatoms for nitrate is negligible at concentrations in the investigated sediments (appr. 1 mg/l NO3-). This study indicates that MPB biomass increase has a general, significantly positive effect on total bacterial and denitrifier abundances, with stimulation or inhibition of specific bacterial groups that however do not result in a re-structured community.


Assuntos
Estuários , Sedimentos Geológicos/análise , Biomassa , Ecossistema
14.
PLoS One ; 9(6): e97564, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24887330

RESUMO

The application of high-throughput sequencing of the 16S rRNA gene has increased the size of microbial diversity datasets by several orders of magnitude, providing improved access to the rare biosphere compared with cultivation-based approaches and more established cultivation-independent techniques. By contrast, cultivation-based approaches allow the retrieval of both common and uncommon bacteria that can grow in the conditions used and provide access to strains for biotechnological applications. We performed bidirectional pyrosequencing of the bacterial 16S rRNA gene diversity in two terrestrial and seven aquatic Antarctic microbial mat samples previously studied by heterotrophic cultivation. While, not unexpectedly, 77.5% of genera recovered by pyrosequencing were not among the isolates, 25.6% of the genera picked up by cultivation were not detected by pyrosequencing. To allow comparison between both techniques, we focused on the five phyla (Proteobacteria, Actinobacteria, Bacteroidetes, Firmicutes and Deinococcus-Thermus) recovered by heterotrophic cultivation. Four of these phyla were among the most abundantly recovered by pyrosequencing. Strikingly, there was relatively little overlap between cultivation and the forward and reverse pyrosequencing-based datasets at the genus (17.1-22.2%) and OTU (3.5-3.6%) level (defined on a 97% similarity cut-off level). Comparison of the V1-V2 and V3-V2 datasets of the 16S rRNA gene revealed remarkable differences in number of OTUs and genera recovered. The forward dataset missed 33% of the genera from the reverse dataset despite comprising 50% more OTUs, while the reverse dataset did not contain 40% of the genera of the forward dataset. Similar observations were evident when comparing the forward and reverse cultivation datasets. Our results indicate that the region under consideration can have a large impact on perceived diversity, and should be considered when comparing different datasets. Finally, a high number of OTUs could not be classified using the RDP reference database, suggesting the presence of a large amount of novel diversity.


Assuntos
Bactérias/crescimento & desenvolvimento , Bactérias/genética , Variação Genética , Água do Mar/microbiologia , Análise de Sequência de DNA/métodos , Temperatura , Regiões Antárticas , Composição de Bases/genética , Bases de Dados de Ácidos Nucleicos , Filogenia , RNA Ribossômico 16S/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...